29 research outputs found

    Critical Evaluation of Organic Thin-Film Transistor Models

    Full text link
    Thin-film transistors (TFTs) represent a wide-spread tool to determine the charge-carrier mobility of materials. Mobilities and further transistor parameters like contact resistances are commonly extracted from the electrical characteristics. However, the trust in such extracted parameters is limited, because their values depend on the extraction technique and on the underlying transistor model. We propose a technique to establish whether a chosen model is adequate to represent the transistor operation. This two-step technique analyzes the electrical measurements of a series of TFTs with different channel lengths. The first step extracts the parameters for each individual transistor by fitting the full output and transfer characteristics to the transistor model. The second step checks whether the channel-length dependence of the extracted parameters is consistent with the model. We demonstrate the merit of the technique for distinct sets of organic TFTs that differ in the semiconductor, the contacts, and the geometry. Independent of the transistor set, our technique consistently reveals that state-of-the-art transistor models fail to reproduce the correct channel-length dependence. Our technique suggests that contemporary transistor models require improvements in terms of charge-carrier-density dependence of the mobility and/or the consideration of uncompensated charges in the transistor channel.Comment: 20 pages, 10 figure

    High performance p-type organic thin film transistors with an intrinsically photopatternable, ultrathin polymer dielectric layer

    Get PDF
    AbstractA high-performing bottom-gate top-contact pentacene-based oTFT technology with an ultrathin (25–48nm) and electrically dense photopatternable polymeric gate dielectric layer is reported. The photosensitive polymer poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) is patterned directly by UV-exposure (λ=254nm) at a dose typical for conventionally used negative photoresists without the need for any additional photoinitiator. The polymer itself undergoes a photo-Fries rearrangement reaction under UV illumination, which is accompanied by a selective cross-linking of the macromolecules, leading to a change in solubility in organic solvents. This crosslinking reaction and the negative photoresist behavior are investigated by means of sol–gel analysis. The resulting transistors show a field-effect mobility up to 0.8cm2V−1s−1 at an operation voltage as low as −4.5V. The ultra-low subthreshold swing in the order of 0.1Vdec−1 as well as the completely hysteresis-free transistor characteristics are indicating a very low interface trap density. It can be shown that the device performance is completely stable upon UV-irradiation and development according to a very robust chemical rearrangement. The excellent interface properties, the high stability and the small thickness make the PNDPE gate dielectric a promising candidate for fast organic electronic circuits

    Roll-to-Roll pilot line for large-scale manufacturing of microfluidic devices

    Get PDF
    Roll-to-roll (R2R) technologies with roller-based nanoimprinting methods enable manufacturing of highly cost-effective and large-scale sheets of flexible polymer film with precise structures on a micro- and nanoscale 1. Areas that can benefit strongly from such large scale technologies are microfluidics, biosensors, and lab-on-chip products for point of care diagnostics, drug discovery and food control. Here, R2R fabrication could greatly reduce production costs and increase manufacturing capacity with respect to currently used products. A pilot line with this technology is investigated in the European Horizon 2020 project R2R Biofluidics and its capabilities are tested on two Demonstrators: - Demonstrator 1: In-vitro diagnostic chip with imprinted microfluidic channels based on optical chemiluminescence measurement by photodetectors. - Demonstrator 2: Neuronal cell culture plate with imprinted cavities and channels for controlled culturing and fluorescence imaging of neurons, for high throughput drug screening. Please click Additional Files below to see the full abstract

    High-throughput roll-to-roll production of polymer biochips for multiplexed DNA detection in point-of-care diagnostics

    Get PDF
    Roll-to-roll UV nanoimprint lithography has superior advantages for high-throughput manufacturing of micro- or nano-structures on flexible polymer foils with various geometries and configurations. Our pilot line provides large-scale structure imprinting for cost-effective polymer biochips (4500 biochips/hour), enabling rapid and multiplexed detections. A complete high-volume process chain of the technology for producing structures like ÎŒ-sized, triangular optical out-couplers or capillary channels (width: from 1 ÎŒm to 2 mm, height: from 200 nm up to 100 ÎŒm) to obtain biochips (width: 25 mm, length: 75 mm, height: 100 ÎŒm to 1.5 mm) was described. The imprinting process was performed with custom-developed resins on polymer foils with resin thicknesses ranging between 125–190 ÎŒm. The produced chips were tested in a commercial point-of-care diagnostic system for multiplexed DNA analysis of methicillin resistant Staphylococcus aureus (e.g., mecA, mecC gene detections). Specific target DNA capturing was based on hybridisation between surface bound DNA probes and biotinylated targets from the sample. The immobilised biotinylated targets subsequently bind streptavidin–horseradish peroxidase conjugates, which in turn generate light upon incubation with a chemiluminescent substrate. To enhance the light out-coupling thus to improve the system performance, optical structures were integrated into the design. The limits-of-detection of mecA (25 bp) for chips with and without structures were calculated as 0.06 and 0.07 ÎŒM, respectively. Further, foil-based chips with fluidic channels were DNA functionalised in our roll-to-roll micro-array spotter following the imprinting. This straightforward approach of sequential imprinting and multiplexed DNA functionalisation on a single foil was also realised for the first time. The corresponding foil-based chips were able to detect mecA gene DNA sequences down to a 0.25 ÎŒM concentration.This research was supported by R2R BIOFLUIDICS project (http://www.r2r-biofluidics.eu/) under Horizon 2020 European Union (EU) Research and Innovation Programme with grant agreement no 646260. The research was also partially supported by NextGenMicrofluidics project (https:// www. nextgenmicrofluidics.eu/) under HORIZON2020 with grant agreement no 862092. The authors cordially thank Gerburg Schider & Gerhard Mohr, Markus Postl, Paul Patter and Alexander Wheeldon (JOANNEUM RESEARCH – Materials, Weiz, Austria) for revising the manuscript, preparing all the chip and R2R pilot line illustrations, taking the photographs and providing technical support, respectively. The authors are also grateful to Christian Wolf and Johannes Götz (JOANNEUM RESEARCH – Materials, Weiz, Austria) for their supports in the fluidic design and R2R UV-NIL structuring, respectively. We further kindly thank Alba Simon Munoz and Robert Fay (SCIENION AG, Berlin, Germany) for providing the illustration of the R2R micro-spotting line. PT specially thanks Ege Ozgun (NANOTAM, Bilkent University, Ankara, Turkey) for critically reading the manuscript

    Flexible pressure and proximity sensor surfaces manufactured with organic materials

    No full text
    \u3cp\u3eThis paper presents the design of two large-Area active matrixes on foil for pressure and proximity sensing applications. Frontend circuits based on organic thin-film transistors on foil are laminated with screen-printed PDVF-TrFE piezo and pyro sensors to create the complete flexible sensing systems. After defining the specifications based on the application scenarios, and designing the frontend electronics, the performance of the two sensing surfaces has been investigated in simulation. Numerical results show a readout speed of 5kframe/s and 60dB of dynamic range with impact forces up to 100kN for the 6×10 pixel pressure sensing surface. 40 dB of dynamic range can be achieved with the proximity detector by integrating optical lenses and the pyroelectric sensor array with unambiguous pixel addressing circuitry which exploits organic TFTs.\u3c/p\u3

    Ultraflexible Organic Active Matrix Sensor Sheet for Tactile and Biosignal Monitoring

    No full text
    Abstract Flexible sensors are currently the subject of intensive research, as they allow cost‐effective and environmentally friendly production of large‐area, flexible, and when fabricated on ultrathin substrates, highly conformable devices. Among many intriguing applications, tactile and biosignal monitoring, where lightweight sensors with high wearing comfort are particularly interesting, is focused on here. The required spatiotemporal resolution of the signals is achieved by integrating the sensors in an active matrix configuration. Organic ferroelectric transducers of high uniformity, characterized, for example, by a sensitivity spread of only 1.5%, are combined with similarly uniform ultralow noise level organic thin film transistors operating below 5 V, showing, for example, a threshold voltage variation of just 0.13 V, in a 12 × 12 sensor array. The transistors transition frequency of up to 160 kHz (saturation range) and 17 kHz (linear range) allows for a high spatiotemporal resolution of ≈3 mm at a frame rate of 1400 fps. The thickness of only 2.8 ”m renders the organic active matrix sensor sheet ultraflexible and therefore virtually imperceptible on the human skin. Real‐time monitoring of tactile modes in a subset of 8 × 3 pixels and of the pulse wave including heart rate and blood pressure using four sensors of the matrix is demonstrated

    Tuning the Porosity of Piezoelectric Zinc Oxide Thin Films Obtained from Molecular Layer-Deposited “Zincones”

    No full text
    Porous zinc oxide (ZnO) thin films were synthesized via the calcination of molecular layer-deposited (MLD) “zincone” layers. The effect of the MLD process temperature (110 °C, 125 °C) and of the calcination temperature (340 °C, 400 °C, 500 °C) on the chemical, morphological, and crystallographic properties of the resulting ZnO was thoroughly investigated. Spectroscopic ellipsometry reveals that the thickness of the calcinated layers depends on the MLD temperature, resulting in 38–43% and 52–56% of remaining thickness for the 110 °C and 125 °C samples, respectively. Ellipsometric porosimetry shows that the open porosity of the ZnO thin films depends on the calcination temperature as well as on the MLD process temperature. The maximum open porosity of ZnO derived from zincone deposited at 110 °C ranges from 14.5% to 24%, rising with increasing calcination temperature. Compared with the 110 °C samples, the ZnO obtained from 125 °C zincone yields a higher porosity for low calcination temperatures, namely 18% for calcination at 340 °C; and up to 24% for calcination at 500 °C. Additionally, the porous ZnO thin films were subjected to piezoelectric measurements. The piezoelectric coefficient, d33, was determined to be 2.8 pC/N, demonstrating the potential of the porous ZnO as an, e.g., piezoelectric sensor or energy harvester

    Technique-Dependent Relationship between Local Ski Bending Curvature, Roll Angle and Radial Force in Alpine Skiing

    No full text
    Skiing technique, and performance are impacted by the interplay between ski and snow. The resulting deformation characteristics of the ski, both temporally and segmentally, are indicative of the unique multi-faceted nature of this process. Recently, a PyzoFlex¼ ski prototype was presented for measuring the local ski curvature (w″), demonstrating high reliability and validity. The value of w″ increases as a result of enlargement of the roll angle (RA) and the radial force (RF) and consequently minimizes the radius of the turn, preventing skidding. This study aims to analyze segmental w″ differences along the ski, as well as to investigate the relationship among segmental w″, RA, and RF for both the inner and outer skis and for different skiing techniques (carving and parallel ski steering). A skier performed 24 carving and 24 parallel ski steering turns, during which a sensor insole was placed in the boot to determine RA and RF, and six PyzoFlex¼ sensors were used to measure the w″ progression along the left ski (w1−6″). All data were time normalized over a left-right turn combination. Correlation analysis using Pearson’s correlation coefficient (r) was conducted on the mean values of RA, RF, and segmental w1−6″ for different turn phases [initiation, center of mass direction change I (COM DC I), center of mass direction change II (COM DC II), completion]. The results of the study indicate that, regardless of the skiing technique, the correlation between the two rear sensors (L2 vs. L3) and the three front sensors (L4 vs. L5, L4 vs. L6, L5 vs. L6) was mostly high (r > 0.50) to very high (r > 0.70). During carving turns, the correlation between w″ of the rear (w1−3″) and that of front sensors (w4−6″) of the outer ski was low (ranging between −0.21 and 0.22) with the exception of high correlations during COM DC II (r = 0.51–0.54). In contrast, for parallel ski steering, the r between the w″ of the front and rear sensors was mostly high to very high, especially for COM DC I and II (r = 0.48–0.85). Further, a high to very high correlation (r ranging between 0.55 and 0.83) among RF, RA, and w″ of the two sensors located behind the binding (w2″,w3″) in COM DC I and II for the outer ski during carving was found. However, the values of r were low to moderate (r = 0.04–0.47) during parallel ski steering. It can be concluded that homogeneous ski deflection along the ski is an oversimplified picture, as the w″ pattern differs not only temporally but also segmentally, depending on the employed technique and turn phase. In carving, the rear segment of the outer ski is considered to have a pivotal role for creating a clean and precise turn on the edge
    corecore